Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality.

نویسندگان

  • Kazuyuki Yoshida
  • Shigeki Furuya
  • Soh Osuka
  • Junya Mitoma
  • Yoko Shinoda
  • Masahiko Watanabe
  • Norihiro Azuma
  • Hideyuki Tanaka
  • Tsutomu Hashikawa
  • Shigeyoshi Itohara
  • Yoshio Hirabayashi
چکیده

D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

An essential role for de novo biosynthesis of L-serine in CNS development.

L-serine plays a versatile role in intermediary metabolism in eukaryotic cells. The physiological significance of its de novo biosynthesis, however, remains largely unexplored. We demonstrated previously that neurons lose the ability to synthesize L-serine after their final differentiation and thus depend on astrocytes to supply this amino acid. This is due to a lack of neuronal expression of 3...

متن کامل

Disruption of G-Protein γ5 Subtype Causes Embryonic Lethality in Mice

Heterotrimeric G-proteins modulate many processes essential for embryonic development including cellular proliferation, migration, differentiation, and survival. Although most research has focused on identifying the roles of the various αsubtypes, there is growing recognition that similarly divergent βγ dimers also regulate these processes. In this paper, we show that targeted disruption of the...

متن کامل

Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5)...

متن کامل

I-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64

Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 5  شماره 

صفحات  -

تاریخ انتشار 2004